A Novel Ensemble Beta-Scale Invariant Map Algorithm
نویسندگان
چکیده
منابع مشابه
A Novel Ensemble of Scale-Invariant Feature Maps
A novel method for improving the training of some topology preserving algorithms as the Scale Invariant Feature Map (SIM) and the Maximum Likelihood Hebbian Learning Scale Invariant Map (MAX-SIM) is presented and analyzed in this study. It is called Weighted Voting Superposition (WeVoS), providing two new versions, the WeVoS-SIM and the WeVoS-MAX-SIM. The method is based on the training of an e...
متن کاملNGTSOM: A Novel Data Clustering Algorithm Based on Game Theoretic and Self- Organizing Map
Identifying clusters is an important aspect of data analysis. This paper proposes a noveldata clustering algorithm to increase the clustering accuracy. A novel game theoretic self-organizingmap (NGTSOM ) and neural gas (NG) are used in combination with Competitive Hebbian Learning(CHL) to improve the quality of the map and provide a better vector quantization (VQ) for clusteringdata. Different ...
متن کاملA Novel Image Encryption Model Based on Hybridization of Genetic Algorithm, Chaos Theory and Lattice Map
Encryption is an important issue in information security which is usually provided using a reversible mathematical model. Digital image as a most frequently used digital product needs special encryption algorithms. This paper presents a new encryption algorithm high security for digital gray images using genetic algorithm and Lattice Map function. At the first the initial value of Logistic Map ...
متن کاملLocal Relation Map: A Novel Illumination Invariant Face Recognition Approach
In this paper, a novel illumination invariant face recognition approach is proposed. Different from most existing methods, an additive term as noise is considered in the face model under varying illuminations in addition to a multiplicative illumination term. High frequency coefficients of Discrete Cosine Transform (DCT) are discarded to eliminate the effect caused by nois...
متن کاملA novel rotation/scale invariant template matching algorithm using weighted adaptive lifting scheme transform
This paper presents a novel algorithm for detecting user-selected objects in given test images based on a new adaptive lifting scheme transform. Given an object as a template, we first select a set of coefficients as object features in the wavelet transform domain and then build an adaptive transform based on the selected features. The goal of the new adaptive transform is to vanish the selecte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.3001690